## **Course Summary** Casing and Tubular Design



| Session              | Day 1                                                       | Day 2                                                  | Day 3                                                     | Day 4                                             | Day 5                                                               |
|----------------------|-------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------|
| 08:00<br>to<br>10:15 | Casing and<br>tubular design<br>Self-test quiz              | Preliminary<br>design (I)<br>Work examples             | Pipe rating<br>burst and<br>collapse                      | Biaxial and<br>combined<br>loads                  | Casing and<br>tubular<br>connections                                |
| 15 mins              |                                                             | Break                                                  |                                                           |                                                   |                                                                     |
| 10:30<br>to<br>12:00 | Conductor<br>design<br>Work examples                        | <b>Preliminary</b><br>design (II)<br>Work examples     | Pipe rating<br>burst and<br>collapse<br>Work examples     | Biaxial and<br>combined<br>loads<br>Work examples | Special casing<br>and tubular<br>design<br>considerations           |
| 12:00<br>to<br>13:00 |                                                             | Lunch Break                                            |                                                           |                                                   |                                                                     |
| 13:00<br>to<br>14:30 | Structural and<br>surface casing<br>design<br>Work examples | Design loads<br>and design<br>factors<br>Work examples | <b>Pipe rating</b><br><b>Axial loads</b><br>Work examples | Tri-axial design                                  | Work group<br>design session (IV)<br>Post course test<br>(optional) |
| 15 mins              |                                                             | Break                                                  |                                                           |                                                   |                                                                     |
| 14:45<br>to<br>16:30 | Conductor,<br>structural design<br>Debrief day 1            | Work group<br>design session (1)<br>Debrief day 2      | Work group<br>design session (2)<br>Debrief day 3         | Work group<br>design session (3)<br>Debrief day 4 | Course debrief<br>Feedback forms<br>Close-out                       |

Note: Work group design sessions will follow a complete well's casing and tubular design process

kingdom\_drilling@msn.com www.kingdomdrilling.co.uk



@kingdomdriller facebook.com/kingdom.driller



## **Course Details** Casing and Tubular Design



## Course Introduction and Overview

#### Fundamental casing design

- Casing types and functions
- Design methodology
- Required information

## Conductor and structural strings

- Structural string design
- Design criteria
- Top hole casing points
- Conductor setting depths
- Surface casing

#### Preliminary casing design

- Introduction
- Mud program
- Shoe setting depths
- Number of strings
- Hole and pipe diameters
- Top of cement
- Trajectory planning
- Pressure testing
- Well integrity assurance

#### **Casing design Loads**

- Introduction
- Constructions of load lines
- Burst, collapse load cases
- Axial load cases

#### **Casing design Factors**

• Operating design factors

#### **Tubular pipe ratings**

- Burst strengths
- Collapse strengths
- Axial strength
- Reduced wall vs nominal thickness
- Combine loads
- Yield temperature derating

## Tri-axial design

- Theory
- Practical use

#### **Casing and Tubular Connections**

- Why connections fail
- Factors affecting connection performance
- General use guidelines
- API connection ratings
- Design factors for API connections
- Use of proprietary connections
- Thread compounds

#### Special design considerations

- Service loads and buckling
- Temperature effects
- Wear
- Corrosion
- Horizontal, ERD wells
- Deepwater, HP HT special considerations
- Other considerations

## Appendix A: A Quick reference design

#### Appendix B: Load case equations

- Burst loads
- Collapse loads
- Axial loads

Appendix C: Supplementary Information

Note: Special and unique well situational conditions require specialised design variations from the principles addressed in this course.

A management of change would be initiated by the persons responsible to assure that compliant well integrity is maintained. Further design verification by a 3rd party casing and tubular design specialist is also frequently conducted.







# Duration/Dates of Course 3 days (Classroom format)

## Overview

A participative program to enable well operations personnel to develop the required knowledge to assure well integrity is maintained through a well's operating life cycle: drilling, completion, well testing, well services, intervention, work-over, to final well abandonment.

## ○ Target Participants

Personnel involved in the operational management, leadership, supervisory, engineering, technical or administrative support of a well's operational life cycle: drilling, completion, well testing, well services, intervention, work-over, to final well abandonment.

## ○ Purpose

 Assure compliant life of well integrity by assuring best operating practices, standards and guidelines are correctly managed and controlled.

## O Goals and Objectives

- To understand the importance of and grasp the process of well integrity management.
- Prevent well integrity issues using best practise design, planning and life of well execution.
- Acquire the technical skills to safely mitigate life of well integrity problems through appropriate planning, organisation, implementation and well control operations from project start to finish.
- Develop a multidisciplinary approach to deliver trouble free operations through compliant well integrity assurance.

## O Course Take Away

- View well integrity within the framework of key strategic operations efforts and maintain a compliant focus on the key areas of well integrity assurance.
- To understand the operational duties in regards to well integrity:
  - Ability to plan, design and engineer a well free from integrity problems during drilling and all associated well operations that follow.
  - Demonstrate a hazard and change management approach to reduce well integrity risks as low as reasonably practicable.
  - Be capable of recognizing and analyzing the warning signs and identify symptoms of well integrity issues that could arise within drilling and well operations.
  - How to employ best practice well integrity management throughout the operational life of wells.





