Duration/Dates of Course
4 - 5 days (Classroom format)

Overview
This introductory course outlines the delivery of complex deepwater drilling projects. It further explores why project management and a multidisciplinary approach is essential to a project’s success. The course enables participants to develop the knowledge and skills to design, engineer and apply a practical approach to a deepwater project’s drilling operations success.

Target Participants
Persons engaged in deep-water or complex well’s drilling projects; e.g., in well design, engineering, operational or organizational functions such as admin, technical, finance, QHSE, logistics, services, support, drilling, geology, geo-science, petroleum, reservoir, completions, workover, and production. Pre-requisite: 2-3 years basic to intermediate knowledge of offshore drilling.

Purpose
• A practical and participative course that shall enable a multidisciplinary project team to develop the skills and knowledge to design, engineer and safely drill a deepwater well.

Goals and Objectives
• Deliver the awareness required for a multidisciplinary team’s skills-set to be developed to enable the practical design, engineering and safe drilling operation of a deepwater well.
• Develop the knowledge required to recognize and analyze the difficulties, challenges and opportunities that exist in deepwater drilling, design, execution and how to mitigate operations risks to as low as reasonably practicable.
• Equip participants with the required tools to evaluate, organize, plan, implement and control a deepwater well’s drilling operating process from the project start to its end.

Course Take Away
• Know the drilling differences between normal offshore and deepwater wells.
• Develop a wider skill to deliver a deepwater well’s safe drilling and operational requirements.
• Enabled to label and identify key project hazards and risks presented within deepwater drilling, and have the knowledge to practice, control and mitigate the operating conditions and contingencies required.
• Develop the knowledge to adapt the technologies best suited for deepwater drilling operations.
Course Summary
Well Design, Engineering & Operations

<table>
<thead>
<tr>
<th>Session</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
</table>
| 08:30 to 10:15 | **Introduction**
 Goals and Objectives
 Deepwater drilling differences
 Self-test quiz | **DW** * Shallow* Structural design
 Case studies, worked examples | **DW** casing and engineering design
 Case studies, worked examples | **DW** well integrity, control and operational management
 Case studies | **DW** adaptive technology opportunities
 Media files, Case studies, worked examples |
| 10:30 to 12:00 | DW projects
 Standards, regulations, and guidelines | DW Riserless drilling
 Case studies, worked examples | Wellbore pressure and stability management
 Case studies, worked examples | Secondary control, contingency and emergency response
 Case studies, worked examples | Suspension and abandonment of wells
 Case studies, worked examples
 Post quiz (30mins) |
| 12:00 to 13:00 | **Lunch Break** | | | | |
| 13:00 to 14:30 | DW rigs, equipment, systems
 Media files | DW water subsea capital equipment
 Media files | Dw drilling and cementing fluids | Learning from Macondo (45mins video)
 Lessons learned discussion | Parking lot questions, course debrief, feedback and closeout |
| 14:45 to 16:30 | DW Geology, Geoscience hazards and challenges | Conductor, wellhead, BOP riser design
 Case studies, worked examples | DW problems, hazards, risk and change management
 Group exercise | DW well control problems
 Close-out
 Group exercise | |

* *DW* = Deepwater
Course Details

Well Design, Engineering & Operations

Day 1

Deepwater Fundamentals, Essentials

DW Essentials and differences:
- Definitions, environments
- Delivering deepwater projects
- Well design, engineering and operations

 Media files 'Deepwater drilling'

DW Project Standards, Rules, Regulations:
- Deepwater trends and drivers
- Project management essentials
- Control and metric principles

DW Rigs, equipment, systems:
- Rigs, equipment challenges and selection
- Pipe handling systems, station keeping
- Riser compensation, tensioning systems
- Subsea BOP and auxiliary equipment
- Marine systems, supply and logistics chain

 Media files supplement in this session

DW Geology and geoscience:
- Deepwater geoscience environments
- Deepwater geoscience hazards
- Pressure, stability, wellbore management

 Media files supplement in this session

Debrief: Review of Day 1

Day 2

DW Design, SSBOP, Riser and Subsea Equipment

Deepwater structural string design:
- Structural string design
- Wellhead and structural string guidelines
- Worked examples and case studies

Deepwater Riserless Drilling:
- Riserless convention and non-convention
- Shallow hazard prediction and mitigation
- Deepwater riserless drilling, with worked examples and case studies

 Media files supplement in this session

DW Subsea Capital Equipment:
- Diverters and marine risers
- Riser and associated components
- BOP and wellhead integrated design

 Media files supplement in this session

DW Conductor, Wellhead, SSBOP/Riser design:
- Drilling riser and wellhead equipment
- Riser behavior, Operating criteria
- Riser analysis, Case study examples

Debrief: Review of Day 2
Course Details
Well Design, Engineering & Operations

Day 3

Deepwater Well Construction, Management

Deepwater casing, tubular design, well integrity
- Deepwater casing design
- Annular pressure build up and wellhead growth
 Worked examples
- Well integrity failure prevention and mitigation
 Case studies

Deepwater Pressure and Stability Management:
- Pressure prediction and detection
- Pressure Management in deepwater
- Wellbore stability management
 Media files supplement in this session

Deepwater Drilling & Cementing:
- Deepwater drilling fluids
 - Water based, oil based
 - Challenges
 - Solutions and application
- Deepwater cementing:
 - Challenges
 - Cementing technologies
 - Solutions and application
 Media files supplement in this session

Deepwater Situational Problems Hazards, Risks:
- Labelling deepwater drilling problems
- Problem solving, risk management and decision making. Case studies, examples
- Contingency and response management

Debrief: Review of Day 3

Day 4 | 5

DW Well Integrity, Control, Assurance

Well control ‘level 1’ assurance management:
- Primary ‘level 1 Deepwater well control’
- Standard operating procedures.
- Best practices, Competency training

Deepwater Secondary ‘level 2’ well control:
- ‘Level 2’ Deepwater well control
- Non-standard operating procedures
- Best practices, Competency training

Deepwater ‘level 3’ well control:
- Learning from DW well control failures
 Macondo investigative media file
- ‘Level 3’ Emergency contingency response

Deepwater Well Control Group exercise:
- Deepwater level 1, 2 & 3 case studies, individual and
 work group exercises

Debrief: Review of Day 4

Day 5: Deepwater Technology, Well Abandonment

Deepwater Adaptive technologies:
- What technologies are for DW?
- Review of adaptive DW technologies
- Technology applications.
- What’s the future for deepwater?

Deepwater Well Abandonment:
- Well integrity assurance in suspension and
 abandonment
- Suspending deep-water wells
- Temporary abandonment
- Permanent abandonment
- Case study examples

Debrief: Review of Day 5

Final course review and feedback