Deepwater Drilling

Well Design, Engineering & Operations

Duration/Dates of Course

4 - 5 days (Classroom format)

○ Overview

This introductory course outlines the delivery of complex deepwater drilling projects. It further explores why project management and a multidisciplinary approach is essential to a project's success. The course enables participants to develop the knowledge and skills to design, engineer and apply a practical approach to a deepwater project's drilling operations success.

○ Target Participants

Persons engaged in deep-water or complex well's drilling projects; e.g., in well design, engineering, operational or organizational functions such as admin, technical, finance, QHSE, logistics, services, support, drilling, geology, geo-science, petroleum, reservoir, completions, workover, and production. Pre-requisite: 2-3 years basic to intermediate knowledge of offshore drilling.

O Purpose

 A practical and participative course that shall enable a multidisciplinary project team to develop the skills and knowledge to design, engineer and safely drill a deepwater well.

Goals and Objectives

- Deliver the awareness required for a multidisciplinary team's skills-set to be developed to enable the practical design, engineering and safe drilling operation of a deepwater well.
- Develop the knowledge required to recognize and analyze the difficulties, challenges and opportunities that exist in deepwater drilling, design, execution and how to mitigate operations risks to as low as reasonably practicable.
- Equip participants with the required tools to evaluate, organize, plan, implement and control a deepwater well's drilling operating process from the project start to its end.

Course Take Away

- Know the drilling differences between normal offshore and deepwater wells.
- Develop a wider skill to deliver a deepwater well's safe drilling and operational requirements.
- Enabled to label and identify key project hazards and risks presented within deepwater drilling, and have the knowledge to practice, control and mitigate the operating conditions and contingencies required.
- Develop the knowledge to adapt the technologies best suited for deepwater drilling operations.

Course Summary

Well Design, Engineering & Operations

	5 1	5 0	D 0	5 (
Session	Day 1	Day 2	Day 3	Day 4	Day 5
08:30 to 10:15	Introduction Goals and Objectives Deepwater drilling differences Self-test quiz	DW* Shallow Structural design Case studies, worked examples	DW casing and engineering design Case studies, worked examples	DW well integrity, control and operational management Case studies	DW adaptive technology opportunities Media files, Case studies, worked examples
15 mins		Break			
10:30 to 12:00	DW projects Standards, regulations, and guidelines	DW Riserless drilling Case studies, worked examples	Wellbore pressure and stability management Case studies, worked examples	Secondary control, contingency and emergency response Case studies, worked examples	Suspension and abandonment of wells Case studies, worked examples Post quiz (30mins)
12:00 to 13:00		Lunch Break			
13:00 to 14:30	DW rigs, equipment, systems Media files	DW water subsea capital equipment	Dw drilling and cementing fluids	Learning from Macondo (45mins video) Lessons learned discussion	Parking lot questions, course debrief, feedback and closeout
15 mins		Break			
14:45 to 16:30	DW Geology, Geoscience hazards and challenges	Conductor, wellhead, BOP riser design Case studies, worked examples	DW problems, hazards, risk and change management Group exercise	DW well control problems Close-out Group exercise	

*DW = Deepwater

Course Details

Well Design, Engineering & Operations

Day 1

Deepwater Fundamentals, Essentials

DW Essentials and differences:

- Definitions, environments
- Delivering deepwater projects
- Well design, engineering and operations Media files 'Deepwater drilling'

DW Project Standards, Rules, Regulations:

- Deepwater trends and drivers
- Project management essentials
- Control and metric principles

DW Rigs, equipment, systems:

- Rigs, equipment challenges and selection
- Pipe handling systems, station keeping
- Riser compensation, tensioning systems
- Subsea BOP and auxiliary equipment
- Marine systems, supply and logistics chain Media files supplement in this session

DW Geology and geoscience:

- Deepwater geoscience environments
- Deepwater geoscience hazards
- Pressure, stability, wellbore management Media files supplement in this session

Debrief: Review of Day 1

Day 2

DW Design, SSBOP, Riser and Subsea Equipment

Deepwater structural string design:

- Structural string design
- Wellhead and structural string guidelines
- Worked examples and case studies

Deepwater Riserless Drilling:

- Riserless convention and non-convention
- Shallow hazard prediction and mitigation
- Deepwater riserless drilling, with worked examples and case studies

Media files supplement in this session

DW Subsea Capital Equipment:

- Diverters and marine risers
- Riser and associated components
- BOP and wellhead integrated design Media files supplement in this session

DW Conductor, Wellhead, SSBOP/Riser desig:

- Drilling riser and wellhead equipment
- Riser behavior, Operating criteria
- Riser analysis, Case study examples

Debrief: Review of Day 2

Course Details

Well Design, Engineering & Operations

Day 3

Deepwater Well Construction, Management

Deepwater casing, tubular design. well integrity

- Deepwater casing design
- Annular pressure build up and wellhead growth Worked examples
- Well integrity failure prevention and mitigation Case studies

Deepwater Pressure and Stability Management:

- Pressure prediction and detection
- Pressure Management in deepwater
- Wellbore stability management Media files supplement in this session

Deepwater Drilling & Cementing:

- Deepwater drilling fluids
 - Water based, oil based
 - Challenges
 - Solutions and application
- Deepwater cementing:
 - Challenges
 - Cementing technologies
 - Solutions and application Media files supplement in this session

Deepwater Situational Problems Hazards, Risks:

- Labelling deepwater drilling problems
- Problem solving, risk management and decision making. Case studies, examples
- Contingency and response management

Debrief: Review of Day 3

Day 4 | 5

DW Well Integrity, Control, Assurance

Well control 'level 1' assurance management:

- Primary 'level 1 Deepwater well control'
- Standard operating procedures.
- Best practices, Competency training

Deepwater Secondary 'level 2' well control:

- 'Level 2' Deepwater well control
- Non-standard operating procedures
- Best practices, Competency training

Deepwater 'level 3' well control:

- Learning from DW well control failures
- Macondo investigative media file
- 'Level 3' Emergency contingency response

Deepwater Well Control Group exercise:

 Deepwater level 1, 2 & 3 case studies, individual and work group exercises

Debrief: Review of Day 4

Day 5: Deepwater Technology, Well Abandonment

Deepwater Adaptive technologies:

- What technologies are for DW?
- · Review of adaptive DW technologies
- Technology applications.
- What's the future for deepwater?

Deepwater Well Abandonment:

- Well integrity assurance in suspension and abandonment
- Suspending deep-water wells
- Temporary abandonment
- Permanent abandonment
- Case study examples

Debrief: Review of Day 5

Final course review and feedback

